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Abstract. We present a systematic and exact evaluation of diffusivity, energy, photo- 
luminescence (PL) decay and photoconduction for systems with energetic and positional 
disorder in thelow-temperature limit. Whereas most quantities can be calculated analytically 
in the long-time limit (slowing down of relaxation), the PL requires explicit calculation of the 
total transition probability G,(t). The problemcan be solved by a step-by-step approximation 
for a simplified PL model, emphasising the diffusional aspect. Finite electric fields lead to 
drastic modifications of relaxation laws at low temperature. We derive a formalism which 
can be applied with great generality in particular to amorphous semiconductors, quantum- 
well superlattices and disordered organic materials. 

1. Introduction 

The relaxation of energy and diffusion of excitations in structures characterised by a 
density of localised states is a problem of great current interest in amorphous semi- 
conductors, quantum wells and superlattices [l-41. Exact analytic methods and Monte 
Carlo simulations have been used to study this problem [5-81. Effective-medium tech- 
niques, which are usually very accurate at high temperatures, turn out to be quite 
misleading at low T .  Exciton relaxation and photoconductivity data taken on amorphous 
silicon and benzophenone glass at very low Tdo indeed confirm the slow relaxation rates 
(freezing-in) predicted by theory [9-121. Recent Monte Carlo simulations by Ries and 
Bassler suggest that the excitons freeze-in even when the Coulomb forces are taken into 
account [ 13,141. In this paper we examine the effect of electric fields onenergyrelaxation 
and photoluminescence (PL) in amorphous semiconductors and superlattice structures. 
The electric field produces qualitative changes in the time dependence and suggests 
novel resonance-type phenomena. 

Basically the problem consists of studying the following phenomenon: imagine a 
density of states P(E) characterised by a mobility edge E, or mobility edges (for particles 
and holes). An ‘electron’ is excited above E, from which point onwards it will relax more 
slowly having to hop from site to site in a random system of localised states. Since this 
processtakesplaceusually at abandedge, thedensityofstatesp(E) isarapidlydecreasing 
function of energy (exponential or Gaussian). This in turn implies that the number of 
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available relaxation sites is rapidly depleted with each jump at very low temperatures. 
The consequent phenomenon of ‘freezing-in’ of excitations has been demonstrated in 
various glassy and amorphous substances [9-111. 

This paper is concerned with the effect of an electric field on this relaxation process 
at low temperatures. From the above discussion, the reader can immediately infer the 
importance that an applied field will have for the long-time low-temperature relaxation: 
in the presence of a field, the number of relaxation sites is greatly enhanced in the field 
direction. Indeed the particle can now, even at T = 0, drift in the field direction and 
always find a site of lower energy to relax into. Though linear response theory obviously 
breaks down, mean-field theories become acceptable again in the presence of electric 
fields because the excitation eventually reaches a ‘steady state’ for which the concept of 
an effective medium is again meaningful. This is, of course, not so for zero field and zero 
temperature where there is no ‘steady state’. The generality of the above phenomena 
should now be evident and its wide range of applicability in most areas of solid-state 
physics has also been demonstrated. 

At zero temperature and in the absence of an electric field, the transport problem 
can be solved exactly for certain classes of disorder (random distribution of sites and 
energies); see [ 121. 

The T = 0 theory can be extended to finite, but low, Tby approximate consideration 
of the number of additional sites available at finite temperatures. The principal features 
will be outlined, with emphasis on the change of relaxation laws. 

The paper is organised as follows. After this introduction we will give a brief descrip- 
tion of the theory and principal methods of the formalism, relying heavily on former 
papers and results [ 141. Section 5 summarises the principal analytical (asymptotic) results 
for the different situations of interest. In § 6 we will present some typical numerical 
results showing the transition between the various regimes and give some important 
results and predictions regarding typical experimental situations. Finally we consider 
the very important problem of photoconductivity (carrier drift) at low temperatures and 
finite electric fields. Recombination and generation are not treated in this paper. We 
show that linear response theory cannot be applied to this situation. A new formalism 
is therefore required and this is discussed with emphasis on amorphous semiconductors. 
Some of the, most interesting applications of our formalism will be to the field of 
superlattices and quantum-well (aw) physics, in particular superlattice photodetection 
[15,16]. We shall discuss this topic in detail in a future paper. 

The last section of this paper is a summary of the material covered and a presentation 
of the main conclusions and future perspectives with suggestion for new experiments. 

2. Theory of transport and relaxation at low temperatures 

In a series of papers [17], we have developed the theory of current and energy decay 
in disordered systems. Starting with the master equation for incoherent motion (for 
simplicity without loss terms) we recall that the carrier density ni(t) at site i obeys 

The experimental quantities of interest can be calculated from the Green function 
Gij(t), which is the formal solution (1). In Laplace space the solution can be written 
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~ i j ( p )  = G: (6, + I WiiGU) (2) 

with the local Green function G;, in Laplace spacep given by 

‘Barred’ quantities are understood as configurationally averaged, keeping the initial 

The diffusivity Di(t) and energy relaxation function Ei(t) are given explicitly by 
and final sites i ,  j fixed, i.e. Gij = (GJij ,  etc.; the transfer rates are denoted by W,. 

Di( t )  = a R:G,(t))/al 
( j  

Ei(t )  = 2 EjGij(t). 
i 

(4) 

Averaging has to be done using the density-of-states (DOS) function p ( ~ , ) .  Typical 
shapes are exponential for DOS tails in amorphous semiconductors and Gaussian in 
disordered organic material. The other ‘input parameters’ of the theory are the transition 
probabilities W,, depending on the interaction under consideration. Two typical situa- 
tions arise: 

(i) exciton singlet transfer 

W ,  = v 0 (R,/Ri, 16f(A&i, /kT) 
(ii) electronic carrier transport or triplet excitonic transition 

w,  = vof(AE,/kT) exp(-2&,). ( 7 )  
The energy- and temperature-dependent part has been summarised in f ( x )  ? which is 
typically of exponential form 

f(x) = exp[ -2(x + Ixl)] x = ( E ,  - &,) /kT .  (8) 
The broad distribution of transition probabilities due to the exponential dependence 

on energy and space is the characteristic label of this kind of disorder. At finite (high) 
temperatures we have successfully applied the effective-medium approximation (EMA) 
for solving the transport problem in good agreement with Monte Carlo (MC) simulations 
and experiment [SI. 

At low (zero) temperature, the relaxation process is always directed downwards in 
energy and therefore the energy equation (5) simplifies to (in Laplace space) 

E ,  = d G 3 ,  + x (GtjW,i),lEI (9) 
I 

which allows an explicit solution [ 121 

with G ( E , ~ )  = G(E) or G ( E , ~ )  and 

.!?L ( E )  = - P G ( & ) l / 4 4  (11) 
where n(e)  is the ratio of sites with energies lower than E .  Similar equations can be 
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derived for the diffusivity and number of new sites visited. The main point is that the 
only quantity that requires explicit calculation is the local Green function. Therefore the 
problem has considerably simplified. 

3. The luminescence decay 

Regarding the Euminescence decay, things are not as easy. The general formalism has 
been developed in [ 181 and therefore only a brief summary up to that point will be given 
here. 

Starting with the general expression for the luminescence decay of light with energy 
E emitted from p ( q ) A q  excitons starting at energy at t = 0 and diffusing to energies 
( E ~ ,  cj + AEJ at timet, 

A L ( E ~ ,  e j ,  E ,  t )  = A E ~ A E ~ P ( E ~ ) P ( E ~ ) G , ( ~ ) > / M ( E ~ ,  &,)I2 dRi dR, (12) i 
the key quantity is the non-local propagator Gij(t). The other important parameter is 
the matrix element M( E ~ ) ,  mainly reflecting the specific model and/or experimental 
situation regarding recombination under consideration. As we want to look at the 
general diffusional aspect of the luminescence decay, we neglect the energy dependence 
of matrix elements Mandrecombination (loss) ratesA (by simplyputting them constant), 
so that 

is therefore the quantity of interest. 
The exact multi-step expansion reads (in Laplace space) 

G. . (  11 P = ~ 0 . 6 . .  11 11 + A G L ~ )  + A G ~ )  + . .  . 

p + z i p  + X j  

with 
1 1 AG$) = w, ~ - 

E ,  = I: w,, + A, (17) 
1 

still including the loss term A,. 

space), we arrive at 

A G r ) ( t )  = 

Transforming the products (in Laplace space) into convolution integrals (in time 

(18) 

(19) 

-Zl  t )  - exp( -2, t)  - exp( - Z 1  t )  
XI - 2, 21 - 2, 

The configurational average results in 

( C l )  = (2 I W,,) + n d r  de p(E)W(r,  E )  = n ( ~ , ) l ?  

(at T = 0, l? = ( ~ / 6 ) n a - ~ ) .  Therefore 
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E(x) = J x  dx’(1 - e-X’)/x’ 

whereas for T = 0 
0 

G(&, t) = e-fi(E)B(O 

P(t) = n d r  (1 - ) 

with W(r) representing the position-dependent factor of the transition rates. Again, the 
PL has been expressed in a systematic way by the local Green function although the 
solution is not accurate enough at long times due to the multi-step expansion. 

4. The influence of an electric field 

Extension tofinite (low) temperatures and electricfield Fis now simple and possible by 
proper calculation of G,(t, F). 

4.1. Finite external electricfield F 

In general the influence of electric fields in hopping conduction is complicated by effects 
such as the variation of wavefunctions [17], percolation effects [19] and new mobility 
laws [20]. Again, we want to confine ourselves to the pure diffusional aspect at very low 
T (T+ 0 K). Here the main effect is on energy, manifesting itself by enhancement of 
the number of accessible sites in the field direction. Introducing the electrochemical 
energy Ei = - eFx,, the energy condition (at T = 0) reads (see figure 1) 

Ej  = - eFxi < - eFxi = Ei. (25) 
Therefore sites with single site energies ej > E ,  at F = 0 become accessible in the field 
direction, resulting in improved (accelerated) relaxation. 

The calculation can be started from the general expression 

Gii(t) = exp ( - n / d r d ~ p ( ~ ) [ l  - exp(-Wijt)]). 

Carrying out the (anisotropic) integration in ( E ,  r )  space, following (25) ,  we arrive at 
( T = O )  

Further evaluation and asymptotic regimes will be considered in the next sections, where 
we also consider the photoconductivity. 

The field dependence of the PL decay can now be calculated from the solution of (27) 
within the multiple-step expansion to the desired accuracy by applying (20) or (21). 

4.2. Finite (low) temperature T 

As mentioned already above, the finite-temperature situation is complicated in general, 
requiring different methods for low (zero) temperature (exact solution, see above) 
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Table 1 

Gaussian Exponential 

Density of states, 

Energy relaxation (asymptotic), 
P ( E )  (I/x%) exp[-(e/a)'] exP(&/&o) 

E(&, t )  - 0 [ 3  h(ln vat)]"* - E ~  In(1n vOt)  

and high T (EMA). Guided by the comparison of exact T = 0 theory ant, MC simulation 
at low T ,  we see that the main effect of temperature is an enhancement of the transition 
possibilities due to states lying higher in energy. This can be incorporated into the 
theory by calculating the finite-temperature Green function GI(&, T )  = G(e i ,  t ,  T): 

with exponential dependence of the transition rates in space and energy, to be explicit. 
Evaluation, of course, is now more involved, but armed with the solution of (28), 

calculation of PL and other quantities is straightforward using the formalism presented 
above. 

5. Analytical and asymptotic solution 

Although the theory presented above requires explicit and numerical evaluation for 
a full solution, some interesting features can already be extracted by analytical 
methods. 

First, we look at the energy decay at T = 0 K and F = 0 V cm-l. This case can be 
calculated from the general solution (equations (10) and (11)) by expansion in the 
long-t, small-p limit [21]. This procedure can also be applied to the diffusivity and 
number of new sites visited: 

with n-l the inverse of n(E), the occupation number function. 
Of special importance are the Gaussian and exponential DOS models (see table 1). 

These have to be compared with the simple logarithmic kTln v,,t behaviour at high 
temperatures (exponential DOS model). This slowing down of relaxation is a direct 
consequence of the change in time dependence of G,(t) at T = 0 K. 
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Asymptotic behaviour (t+ m) evaluation of (23) results in 

G ( E ,  t )  = exp[ - (In ~ ~ t ) ~ n n ( ~ ) ( x / 6 ) a - ~ ] .  (30) 
Assuming In G-l = 1 for the cut-off energy E between mobilised and immobilised 
states, one finds 

E(t )  = n-l 

which is virtually equation (29)! 
We can therefore conclude that the asymptotic energy decay can be calculated 

from the Green function directly. This is of valuable help for the more complex 
situations, involving temperature or field. 

At short times, the EMA is completely sufficient both at low and high temperatures 

Gji( t+ 0 )  = 1 - ( 2 ; ) t  = exp[ - ( Z i ) t ]  (32) 
e.g. simple exponential decay in contrast to the approximate power-law decay at T = 
0 K, t+ (equation (30)).  

The multi-step expansion essentially is an expansion in time and transition steps. 
This can be seen by expanding the exponentials in (19) and (21) (and using (24)):  

P(t) = w t  at short times, in agreement with the general expression (24).  Thus 
( ~ ~ r ) ( t +  0)) - P(Ei)P(Ej )P( t ) .  (33) 

P i P j  
nj - nj ( A G f ) ( t +  0 ) )  ~ ( ( 1  - pnj)[p(n; - nj) - @*(ni - nj)*] 

+ (1 - pni)[p(nj - nj) - apyn j  - ni)2]} (34a) 
(34b) ( A G r ) ( t +  0 ) )  = pipI@3*(nj - n,) 

which is quadratic in t at short times and proportional to the number of sites between 
initial and final states. One can also see that the two-step contribution dominates when 
P(t)(ni - nj) B 1 ,  i.e. at long times and large occupation-number difference. On the 
other hand, as G(E,  t )  already exhibits the correct long-time asymptotic power-law 
decay, qualitatively correct results can already be obtained by considering ( A G r ) )  
alone. At the end of the next section, we will explore the behaviour quantitatively by 
numerical calculation. 

The field dependence, e.g. (27),  can be approximated in the two limiting cases 
F+ 0 and F+ E. 

(i) F+ 0: 

In G j j  = ln[Gji(F = O)] - O ( p )  (35) 
i.e. square dependence of field. 

(ii) F+ m: I:, dx n(e + eFx) + r 

therefore 

ln[Gii(F+ CO)] = -n4n  drr’(1 - e-‘W(‘) ) / 2  

i.e. ‘simulating’ a constant DOS of a! 
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Figure 1. Spectrum (E, )  of transient photo- 
luminescence for three (dimensionless) different 
times ( v0t = 10, 1000, lo5) and Gaussian density 
of states (width U =  1). Start energy E ,  = 0, 

= 0.01. Inset shows time-dependent shift of 
the peak energy E,,, (in units of U ) .  

0 b -1  - 2  

0.01 

E/ 

Physically, half of the whole sites of the system (in forward field direction) are 
accessible, independent of the DOS shape. The situation therefore is very similar to 
the well known temperature dependence of hopping at the Fermi level, again exhibiting 
the close relation between temperature and field, but with constraints in geometry 
(half-space). 

Similar to equation (31) the energy decay can be calculated approximately for the 
exponential DOS model 

~ ( t ,  F )  = Eo - (eF/2cu) In v o t  - 3~~ h( ln  vot)  (37) 

again confirming the enhancement of the relaxation by the field in a similar way to 
temperature (compare second and third terms!), Equation (37) should be compared 
to the mean-field result quoted in [12]. Effective-medium theories are again reasonable 
even at T = 0 for sufficiently large F.  

6. Numerical results 

The PL decay (without field and/or temperature) within the one-step approximation 
has already been published in [18]. We therefore present here only the corrected 
spectrum for the Gaussian DOS model (figure 1) at three different time steps. The 
initial energy E~ lies at the centre of the distribution. At short times (vot = 10) PL is low 
and monotonically decreasing. The onset of diffusion is reflected in the enhancement of 
PL at vot = 1000. At  longer times PL is decreasing again due to the recombination. The 
shift in energy of the PL maxima is plotted explicitly in the inset showing the slow 
energy decay in the Gaussian DOS at T = 0 K. Further results for this DOS model will 
be given elsewhere. Instead, in the following, we will concentrate on the exponential 
DOS model ( E ~  = 1 energy unit, = 0 and nay-3 = 0.01 in the following). Figure 2 
shows the quenching of the PL with external electrical field for two different times 
(vot = lo4 and lo5) and final energies (E ,  = -1, -2) .  There is a non-trivial crossover 
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r 

-1 

0 0.2 0.L 0.6 

eF/La 
Figure 2. The field dependence of PL for two 
different times (vat = lo4, lo5) and final energies 
(-1, -2), as indicated by the values on the 
curves. Exponential DOS ( E ~  = l),  n ( ~ - ~  = 0.01. 
Start energy E, = 0. Figure shows quenching of 
PL with field. (Energy in units of sa.) 

PL 0.04 0 . 0 5  1 
2529 

- 2  -4 - 6  
E 

Figure 3. Spectrum of PL at fixed time (vat = 10') 
and various electric fields (eF/2a = 0, 0.2, 0.4). 
Other parameters as in figure 2. Plot shows 
broadening of spectrum with field. (Energy in 
units of E " . )  

Figure 4. A plot of peak energy of PL spectrum 
(left, full curve) versus time compared to asymp- 
totic decay law from equation (31)  (exponential 
DOS model), = 1. The broken curve represents 
the curve E(t )  = 5 - 3ea In(ln vot) where E,, = 1. 
The curve -ln(ln vat) is also shown (right. full 
curve). (Energies are in units of eo. )  

between the two different energies at a given time. Owing to the chosen (long) time, 
the PL is lower at lo5 for all fields and both energies. 

Figure 3 exhibits the change of the transient PL spectrum (at a given time vot = 
lo5) with field. Mainly two features are important: 

(i) The shift of the PL peak to lower energies with increasing magnitude of the 
field. This reflects the enhancement of 'diffusion' with electric field. 

(ii) The broadening of the spectrum with field, mainly indicating the increase of 
transition probabilities at higher fields. Additionally the spectrum is broad sloped at 
high fields and short times. 

In this case the maximum is not well defined with some spurious behaviour at small 
energies. 

Next we will consider some typical behaviour of the energy decay. As already stated 
in the preceding sections, the time decay of the PL maximum can be approximated well 
by the cut-off energy of the local Green function G(E,  t ) .  To this aim we compare the 
expression, given by (31), with peak energy Emax(p~) ,  estimated from the full spectrum 
at different times (not shown here). Figure 4 shows that for times larger than lo4 the 
coincidence is nearly complete. Therefore in the following the energy decay will always 
be calculated from the cut-off energy of G(E,  t ) .  

The main result of the present paper is the change in time dependence of the 
energy decay with field, for T = 0, which is plotted in figure 5 .  
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Figure 5.  The field dependence of energy decay 
at T = 0 K. The figure shows the transition from 
slow In(ln v,t) decay at F = 0 to In vot law at 
higher fields (exponential DOS model), n K 3  = 
0.01, exponential P ( E )  with en = 1. (Energies are 
in units of E,, . )  

Log (log v , f i  ' 0 . 2  
- 

- 2  t \ \  

-4 t \ \  

'0.2 

Figure 6. Energy decay for T = 0 and T = 0.2 
(exponential DOS model, slope E,, = 1): (a)  
E(t,  r )  versus log vot;  (6) E(t ,  T )  versus 
log(1og vnt ) .  This figure shows scaling of energy 
at low T(.zn+ E~ + O.STapproximately), n ( ~ - ~  = 
0.01. (Energies are in units of E,, . )  

One observes the transition from the very slow double-logarithmic relaxation 
without the field, characteristic of non-activated hopping-down motion, to the 'acti- 
vated', simple logarithmic behaviour. The last law is also typical for high-temperature 
hopping relaxation [21] or multiple trapping [ 11. 

Note that the field is playing the role of temperature at T = 0 K! 
The enhancement of relaxation at low, but finite, temperature can be calculated 

approximately from the finite-temperature Green function (equation (28)). In figure 
6(a) E(t ,  T )  is plotted against log vOt,  comparing the T = 0 and T = 0.2 relaxation 
energy (which is E ,  the slope of the exponential DOS tail). To show the decrease of 
slope more quantitatively, the same curves are plotted in figure 6(b)  versus log(1og vat). 
As argued from general reasons already in the preceding sections, the decay law at 
finite T i s  still double-logarithmic, but with increased slope ( E ~  + 0.5 T)  (this follows 
approximately from the figure). Therefore, energy scaling is sufficient to describe low- 
T relaxation! Of course, owing to the limited Ansatz, the precise transition to the high- 
T situation cannot be given within the present approach. But this was not the goal 
and scope of the present investigation. 

The last figure in this paper shows the extension of the formalism due to equation 
(21) by including the two-step contributions into the calculation. Figure 7 has to be 
compared with figure 4 from [22 ] .  The plot covers a very large range in time, obviously 
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0 . 3 2  

0 .24  

m 

0.16 
Y 'n W 

c 
5 
--I 

0.08 

Time 

Figure 7. PL decay for various final energies ( E , =  -1, -2, -3) within the two-step 
approximation (exponential DOS model, E,  = 0, E~ = 1). This figure shows the importance 
of higher-order terms at long times. The different symbols correspond to: E, = -0.5 (+), 
-1 ( A ) ,  -1.5 (e),  - 2  (O), -2.5 (A), -3 (X) ,  -3.5 (0) and -4.0 (a). 

larger than the validity of the theory. The main effect of the two-step terms is the 
enhancement and shift of the PL maxima. 

The effect is quantitatively substantial, indicating the need for an extension of the 
theory. Nonetheless the qualitative behaviour is still correct within the low-step 
expansions. 

7. The field dependence of the 'photocurrent' 

One of the most important quantities in the theory of relaxation in semiconductors, 
whether bulk, amorphous, thin films or superlattices [3,18], is the behaviour of the 
photocarrier drift Z, as a function of time, initial energy and elastic field. In the regime 
where linear responsive theory is valid (eFR/kT, < 1) and where T, can be an effective 
hot electron temperature, there is a simple relation between I&&, t )  and D ( E ,  t )  as 
given by (4). 

Knowledge of the latter is therefore sufficient. At low temperatures and in band 
tails we are however easily in the regime eFR 3 kT, because the density of states can 
be very small ( R  is large). Here one can no longer use linear response ideas and it is 
crucial to compute I,, from first principles. We write therefore in Laplace space p 

where I&) = I l ( q ,  p ) .  At low temperatures, back jumps or loop processes to the same 
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site are very improbable (zero for T = 0) and it is therefore justified to decouple the 
configurational averages so that 

] ( E l  , P )  = IO(&, , PI + J-1 d E /  P ( E / )  dR/ G(E1, P )  W E ,  ; E l ,  & M E / ;  PI (40) 

where 

‘O(‘l;P) = (1 P ( & / )  1 d R /  R I , w d )  G(E17P)* (41) 

We can conventionally rewrite this in time space as 

where G(E,  t ;  F )  is given by (27) and V is a drift velocity, which is straightforward to 
evaluate for any model of Wll. 

Equation (39) is an integral equation exactly soluble at T = 0 when F = 0. For 
finite F the energies E~ are given by ( E ;  - eF * R r )  so that there is a correlation 
between position and energy. 

Let us consider (42) in two limits: (i) short time f Z1 e 1, i.e. the particle has time 
to make a single jump to ‘ j ’ ;  and (ii) tX + 1, i.e. the time is long enough so that 
memory of the initial energy is lost and I (&,  t )  - Z(t).  From the work in [E, 161 we 
know that the energy-dependent diffusivity curves eventually merge info a single 
universal time decay curve. 

For case (i) we consider the first-order term AGf)(t) contributing to Zp for t C, 4 
1; I f ( & ,  r) is given by (42). 

Equation (42) is valid as long as the photocurrent is larger than the effective current 
of the effective new ‘energy level’ reached after the first (relaxation) jump, etc. Thus 
if c1 is the effective energy after the first jump, we have (cl < E )  

IO ( E , ,  t )  = V(E1, FIG(&, 3 t ;  F )  (42) 

Z P k ,  4 - V(E, F M E ,  F; 
If ( E ,  t )  - V(E17 F)G(EI , F; t> 

(43a) 
(43b) 

etc., with (43a) G (43b). In this ‘iterative’ way of looking at the short-time pho- 
toresponse, the mean energy relaxation rate as a function of time or number of steps 
is obviously a highly relevant quantity. Substituting the energy relaxation function 
E(&,  t)  (figures 5 and 6) instead of E in (43a) should give us an excellent representation 
of the short-time photocurrent. When the rates WIl represent non-linear tunnelling 
rates as shown for example in [23], for superlattice and quantum-well systems, the 
combination (43a) with E(&,  F; t )  and V(E(E,  t ) ;  F )  is the appropriate short-time 
photocurrent relaxation. In such cases we have negative differential resistance (NDR) 
effects and the possibility of space-charge oscillations with effective time-dependent 
internal electric fields. This time dependence will therefore modulate 
V ( E ,  F )  + V ( E ,  F( t ) )  and consequently lead to oscillations in the photocurrent decay 
(see [24]). 

In the long-time limit (40) can be solved immediately to give 

or in time space (T+ 0) 

where fi,, is an effective electronic distribution function established in the quasi-steady 
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state with an electric field present. Basically we can assume thatf,,, is the same as the 
Fermi function with an effective electric-field-dependent temperature T,(F). Equation 
(45) is also a good approximation at low T; at higher T when eFR/kTe < 1, it is better 
to use the generalised transport theory developed in [25] .  

The effective field-dependent distribution function can be evaluated rigorously 
using the analogous energy, field and time-dependent relaxation equation (equation 
(39) for energy relaxation). We can then define fi,, using 

Knowing the LHS we can determine T, for a given P ( E ) .  For most situations 

Equation (46) together with an analogous relation for E(&, t )  using (45) allows a 
determination of kTe. 

Yet another, and for the present purpose more convenient, way to characterise 
the steady state is to introduce the concept of a demarcation energy E such that the 
transfer rate above E is roughly the same as the net transfer rate to states below E ,  
i.e. 

E(&,  t)t--tco kTe. 

2 W(.q Ej&) = 2 W(E; Ej;Rij) 
& j < E  E , > E  

RI RI 

(47) 

where 
The evaluation of these relations naturally now depends on the actual system 

considered, superlattice, bulk semiconductor, etc. As a simple application, consider 
a semiconductor with a constant P ( E ) .  Using the theory developed in [5], we have a 
very elegant way of calculating the conductivity at long time. 

This method, described in detail in [17], is not entirely equivalent to the T = 0 
formula as given by (45) (for the latter we can use (26) and integrate over all times). 
In many respects, however, the following formula is more accurate because it is not 
restricted to T = 0 and allows back jump processes within the effective-medium 
description. Strictly speaking we are not at T = 0 but always at some T, > T when F 
is finite. 

From [5], defining CJ to be the effective jump rate from a site (e i  = 0, Ri = 0) we 
have 

is the field free energy. 

where 

where W(R; E )  is the energy- and distance-dependent jump rate, and n is the density 
of sites. The prefactor v o  can itself be a function of field and temperature but we shall 
treat it as a constant for simplicity. 
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At T = 0 only down jumps are allowed, so that if E is an effective hot electron 
demarcation energy in the steady state, we have 

P ( E )  = l/o E in [0, E + eFR cos 01 (50) 
for a jump to a site Rj .  

Substituting in (46) we obtain 

1 
v010e+2“R +1’ [ E +  eFR cos 0 ] R 2  sin 0 d 0  - 

1 = 2 n n / d R l -  &+eFR COS e] >O 

Writing B = v o  e-2aR, we can use (51) to obtain an effective jump distance R .  In order 
to obtain E we need to know the average energy relaxed in a jump. This is obtained 
by noting that the particle can hop anywhere into the band from [0, E + eF - R ]  so that 
the average energy lost by the particle is 

(52) 
E+ eFRi2 H+pFR/2 E + eFR/2 

2 .  
E ’ ~ ( E ‘ )  de’//  p d s ’  = - 

E R  - i, 
For steady state we have that 

ER = eFR/2 (53) 
so that the average energy lost just corresponds to the average energy gained by the 
field and E -  eFR/4. 

Equation (51) can now be solved easily to give 

exp[ - (64a4 W/%nneF)  ‘I4]. (54) e - 2 ~ R  = 

Note that for kT > eFR we would obtain the usual ‘T1I4 law’ for hopping conduction. 
Note also that the long-time limit of the ‘carrier drift velocity’ can be evaluated 

using (51) and thus we have 

2nneF (55) 

8. Conclusion, outlook and extension 

The multi-step expansion has been shown to be a fruitful tool to calculate various 
quantities of interest in non-equilibrium relaxation via localised states. Interestingly 
enough the limitations due to low number of relaxation steps, normally included into 
the calculation, can be overcome by an explicit solution Gij(t)! The method is similar 
to the one used for energy relaxation (equation (lo)), resulting in a closed expression 
for the non-local Green function at T = 0 K. 

Details of the derivation and further (numerical) calculations will be given in a 
future paper. 

Results have been presented primarily for the photoluminescence and energy decay 
functions and their field and (low-) temperature dependence. Some of the most 
interesting and widely studied systems are quantum wells and in particular exciton 
relaxation in QW structures [25]. 

Common observations are: 
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(i) quenching of PL with external field, 
(ii) broadening of the spectrum, 
(iii) shift of peak energy. 

In order to treat the field-dependent photoluminescence and photocurrent relax- 
ation in QW and superlattices, the present theory would rleed to be extended to allow 
for excitonic processes. This includes mainly the effect of the Coulomb force on the 
electron-hole drift and diffusion in the system. One of the most interesting aspects of 
such a system is caused by the non-linear electric-field-dependent hopping probabilities 
[23]. These effects could easily be included in the present definition of the jump rate 
W(q, E,, R) ,  and have been discussed in detail in [23]. The present formalism is easily 
adapted to superlattices and QW whenever the ‘carriers’, or luminescing pairs have a 
negligible Coulomb coupling. 

Systematic experimental investigations of the field-dependent time decay of lumi- 
nescence and photocurrents are surprisingly lacking in both amorphous and crystalline 
systems. We therefore hope that the present theoretical study and its precise predictions 
will encourage definite experimental work in this direction. 

The change of energy decay with field from ln(1n vot) at T = 0 K to In vot explores 
once again quantitatively the intimate relation between electric field and temperature 
(In vot is the typical high-T relaxation law). 

We have also developed a theory of photoconductivity which can be applied to the 
high-field domain and can be used for practically all situations of interest including 
superlattices, ordered and disordered systems. We have evaluated the short-time and 
long-time carrier drifts for a simple model system. Application of the formalism to 
more complex situations is straightforward. 
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